TARGET MATHEMATICS by:- AGYAT GUPTA Page 1 of 4

REG.NO:-TMC -D/79/89/36

General Instructions :

- 1. All question are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each .
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 2 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 3 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड – स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं ।
- 6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 3 हैं।
- 7. प्रश्न–पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर–पुस्तिका के मुख–पृष्ठ पर लिखें।

Pre-Board Examination 2010 -11

Time : 3 Hours

Maximum Marks : 100

Total No. Of Pages :3

अधिकतम समय : 3 अधिकतम अंक : 100 कल पष्ठों की संख्या : 3

	CLASS – XII	CBSE	MATHEMATICS		
Section A					
Q.1	Find the value of $\tan^{-1}(\sqrt{3})$ -	$-\sec^{-1}(-2)$. Ans $=\frac{-\pi}{3}$			
Q.2	In figure (a square), identify \overrightarrow{a} equal \overrightarrow{c}	the following vectors.(i) Co	oinitial (ii) Equal (iii)Collinear but not Ans . (<i>i</i>) $a \& d$, (<i>ii</i>) $b \& d$, (<i>iii</i>) $a \& c$		

TMC/D/79/89

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited..

Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.

Solid Converte

To remove this message, purchase the product at www.SolidDocuments.com

Q.3	Find the slope of the tangent to the curve $x = t^2 + 3t - 8$, $y = 2t^2 - 2t - 5$ at the point.(2, -1) Ans $= \frac{6}{7}$			
Q.4	If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ . Ans $\lambda = 8$			
Q.5				
Q.6	If $f: R \to R$ be defined as $f(x) = \frac{3x+7}{9}$, then find $f^{-1}(x)$. Ans $f^{-1}(x) = \frac{9x-7}{3}$. Let relation $R = \{(x, y) \in w \times w: y = 2x - 4\}$. If $(a, -2)$ and $(4, b^2)$ belong to relation R, find the value of a and b. Ans. $a=1,b=2$			
Q.7	Find values of k if area of triangle is 4 square units and vertices are $(k,0),(4,0),(0,2)$. Ans k=0,8			
Q.8	The number of all possible matrices of order 3×3 with each entry 0 or 1. Ans $= 2^9$			
Q.9	Find the total number of one one function from set A to A if $A = \{1, 2, 3, 4\}$. Ans. $4! = 24$			
Q.10	If the points (1, 1, p) and (-3, 0, 1) be equidistant from the plane $\vec{r} \cdot (3\hat{i} + 4\hat{j} - 12\hat{k}) + 13 = 0$, then find the value of p. Ans $p = 1, \frac{7}{3}$			
	Section B			
Q.11	Show that the curve $y^2 = 8x \& 2x^2 + y^2 = 10$ intersect orthogonally at the point $(1, 2\sqrt{2})$. Ans $m_1 \times m_2 = -1$			
Q.12	If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices A, B, C of a \triangle ABC respectively. Find an expression for the area of \triangle ABC and hence deduce the condition for the points A, B, C to be collinear. $areaof \triangle ABC = \frac{1}{2} \vec{AB} \times \vec{BC} \Rightarrow A(\triangle ABC) = 0 \therefore \vec{b} \times \vec{c} + \vec{c} \times \vec{a} + \vec{a} \times \vec{b} = 0$			
Q.13	Evaluate: $\int e^x Sin^2 4x dx$. Ans $\frac{e^x}{2} - \frac{e^x \cos 8x}{130} - \frac{4e^x \sin 8x}{65}$ OR Evaluate : $\int e^x \left(\frac{x^2 + 1}{(x+1)^2}\right) dx$. Ans $e^x - \frac{2e^x}{x+1}$			
Q.14	Find all point of discontinuity of f, where f is defined as following : $f(x) = \begin{cases} x +3 & ifx \le -3 \\ -2x & -3 < x < 3 \\ 6x+2 & ifx \ge 3 \end{cases}$ Ans			
	$f(x) = \begin{cases} -x+3 & x \le -3 \\ -2x & -3 < x < 3 \\ 6x+2 & x \ge 3 \end{cases}$ f(x) is continuous at x = -3 Whe; RHL=LHL = FUNCTIONAL			
Q.15	VALUE = 6 & f(x) is not continous at x = 3 ; RHL = 20 & LHL = - 6Show that the following differential equation is homogeneous, and then solve it :			
	$ydx + x \log\left(\frac{y}{x}\right) dy - 2xdy = 0$. Ans $x(x^2 - 1)\frac{d^2y}{dx^2} + (2x^2 - 1)\frac{dy}{dx} = 0$			
Q.16	The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3			
	units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds. Ans $r = (63t + 27)^{\frac{1}{3}}$			
TMC/D/79/ Ph. :23				

TARGET MATHEMATICS by:- AGYAT GUPTA Page 3 of 4

	OR			
	Find the particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x (x \neq 0)$ given that			
Q.17	$y = 0 \text{ when } x = \frac{\pi}{2}. \text{ Ans } y \sin x = x^2 \sin x - \frac{\pi}{4}$ Prove the following : $\cos[\tan^{-1}{\sin(\cot^{-1} x)}] = \sqrt{\frac{1+x^2}{2+x^2}}.$			
Q.18	Prove that: $\begin{vmatrix} (y+z)^2 & xy & zx \\ xy & (x+z)^2 & yz \\ xz & yz & (x+y)^2 \end{vmatrix} = 2xyz(x+y+z)^3$.			
Q.19	The probability of India wining a test match against West Indies is 1/3. Assuming independence from match to match .Find the probability that in a 5 match series India's second win occurs at the third test. Ans $p = 1/3$; $q = 2/3$ Required probability; $= {}^{2}c_{1} \times \left(\frac{1}{3}\right) \times \left(\frac{2}{3}\right) \times \left(\frac{1}{3}\right) = \frac{4}{27}$			
	OR A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed three times ,find the probability distribution of number of tails. Ans $n = 3$, $P(H) = \frac{3}{4}$, $P(T) = \frac{1}{4}$ x = 0 = 1 = 2 = 4 $p = \frac{27}{64} = \frac{27}{64} = \frac{9}{64} = \frac{1}{64}$			
Q.20	Discuss the relation R in the set of real number, defined as $R = \{(a,b): a \le b^3\}$ is Reflexive, Symmetric & Transitive . Ans ; Not reflexive ; symmetric and transitive			
Q.21	If $y = \frac{x \sin^{-1} x}{\sqrt{(1-x^2)}} + \log \sqrt{1-x^2}$. Prove that $\frac{dy}{dx} = \frac{\sin^{-1} x}{(1-x^2)^{3/2}}$. OR Prove that the derivative of $y = \sqrt{(\sqrt{1+x^2}-1)}$ with respect to $y = \sqrt{(2x\sqrt{1-x^2})}$ at $x = 0$ is 16			
	Prove that the derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with respect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x = 0$, is ¹ / ₄ .			
Q.22	Find the equation of the perpendicular drawn from the point P (2, 4, -1) to the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{6-z}{9}$ Ans foot of prependicular is (-4,1,-3)& Equation of perpendiculaire $\frac{x-2}{6} = \frac{y-4}{3} = \frac{z+1}{2} or \frac{x+4}{6} = \frac{y-1}{3} = \frac{z+3}{2}$			
	Section C			
Q.23	If $_{A^{-1}} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(AB)^{-1}$ Ans $(AB)^{-1} = \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$			
Q.24	A toy manufacturers produce two types of dolls ; a basic version doll A and deluxe version doll B. Each doll of type B takes twice as long to produce as one doll of type A. The company have time to make a maximum of 2000, dolls of type A per day, the supply of plastic is sufficient to produce 1500 dolls per day and each type requires equal amount of it. The deluxe version i.e. type B requires a fancy dress of which there are only 600 per day available. If the company makes profit of $\mathbf{\overline{T}}$ 3 and $\mathbf{\overline{T}}$ 5 per doll respectively on doll A and B, how many of each should be produced weekly in order to maximize the profit ? Solve it by graphical method. Ans : $z = 3x + 5$ y $x + 2y \le 2000, x + y \le 1500, y \le 600; x, y \ge 0$. corner points : (0,0) ; (1500,0) (1000, 500) (800,			
TMC/D/79/89 3 P.T.O. Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685@, 92022217922630601(O) Mobile : 9425109601;9907757815 (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited Visit us at : http://www. targetmathematic.com; Email:agyat99@gmail.com.				

S

SOLID CONVERTER PDF

To remove this message, purchase the product at www.SolidDocuments.com

	TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4
	600) & (0 , 600) Thus Z is maxmium at (1000 , 500) and maximum value is 5500 .
0.25	2
Q.25	Evaluate: $\int_{0}^{\pi} \frac{x}{a^{2} - \cos^{2} x} dx$. Ans. $\frac{\pi^{2}}{2a\sqrt{a^{2} - 1}}$
Q.26	Using integration, find the area of the triangle bounded by the lines $x + 2y = 2$, $y - x = 1$ and $2x + y$ B(2,3) B(2,3) B(2,3) C(4,-1)
	$A_{1} = \int_{-1}^{3} \frac{7 - y}{2} dy; A_{2} = \int_{1}^{3} (1 + y) dy; A_{3} = \int_{-1}^{1} (2 - 2y) dy \Longrightarrow A_{1} - A_{2} - A_{3} = 6unit^{2}$
Q.27	A, B and C play game and chances of their winning it in an attempt are 2/3, 1/2 and 1/4 respectively. A has the first chance, followed by B and then by C. This cycle is repeated till one of them wins the
	game. Find their respective chances of winning the game. Ans $A = \frac{16}{21}, B = \frac{4}{21}, C = \frac{1}{21}$
	OR 21 21 21
	How many time must a man toss a fair coin, so that the probability of having at least one head is more than 80%? Ans $p = \frac{1}{2}$; $q = \frac{1}{2}$. let n denote the number of trials $.1 - p(x = 0) > 80 \%$. $\left(\frac{1}{2}\right)^n < \frac{1}{5} \therefore n \ge 3$ There fore the coin be tossed 3 times.
Q.28	State when the line $\vec{r} = \vec{a} + \lambda \vec{b}$ is a parallel to the plane $\vec{r} \cdot \vec{n} = d$. Show that the line
Q .=0	
	$\vec{r} = (i+j) + \lambda (2i+j+4k)$ is parallel to the plane $\vec{r} \cdot (-2i+k) = 5$. Also find the distance between the line and
	the plane. Ans Required Condition for line // to plane is $b \bullet n = 0$ and distance between plane and line $\frac{7}{\sqrt{5}}$
Q.29	Find the shortest distance of the point $(0, c)$ from the parabola $y = x^2$, where $0 \le c \le 5$. Ans
	$S.D. = \frac{1}{2}\sqrt{4c-1}$
	Or Prove that the radius of the right circular cylinder of greatest curved surface area which can be inscribed in a given cone is half of that of the cone. Ans $H = h - x \cot CSA = f(x) = 2\pi RH = 2\pi x (h - x \cot \alpha)$
	X

TMC/D/79/89

P.T.O.

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : <u>9425109601;9907757815</u> (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.. Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.

SOLID CONVERTER P

4

This document was created using

e

To remove this message, purchase the product at www.SolidDocuments.com